图表类别:线形图、柱状图、密度图,以横纵坐标两个维度为主
同时可延展出多种其他图表样式
plt.plot(kind='line', ax=None, figsize=None, use_index=True, title=None, grid=None, legend=False, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, label=None, secondary_y=False, **kwds)
1.Series直接生成图表
import numpy as npimport pandas as pdimport matplotlib.pyplot as plt% matplotlib inline# 导入相关模块import warningswarnings.filterwarnings('ignore') # 不发出警告ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))ts = ts.cumsum()ts.plot(kind='line', label = 'hehe', style = '--g.', color = 'red', alpha = 0.4, use_index = True, rot = 45, grid = True, ylim = [-50,50], yticks = list(range(-50,50,10)), figsize = (8,4), title = 'test', legend = True)#plt.grid(True, linestyle = "--",color = "gray", linewidth = "0.5",axis = 'x') # 网格plt.legend()# Series.plot():series的index为横坐标,value为纵坐标# kind → line,bar,barh...(折线图,柱状图,柱状图-横...)# label → 图例标签,Dataframe格式以列名为label# style → 风格字符串,这里包括了linestyle(-),marker(.),color(g)# color → 颜色,有color指定时候,以color颜色为准# alpha → 透明度,0-1# use_index → 将索引用为刻度标签,默认为True# rot → 旋转刻度标签,0-360# grid → 显示网格,一般直接用plt.grid# xlim,ylim → x,y轴界限# xticks,yticks → x,y轴刻度值# figsize → 图像大小# title → 图名# legend → 是否显示图例,一般直接用plt.legend()# 也可以 → plt.plot()
输出:
2.Dataframe直接生成图表
# Dataframe直接生成图表df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD'))df = df.cumsum()df.plot(kind='line', style = '--.', alpha = 0.4, use_index = True, rot = 45, grid = True, figsize = (8,4), title = 'test', legend = True, subplots = False, colormap = 'Greens')# subplots → 是否将各个列绘制到不同图表,默认False# 也可以 → plt.plot(df)
输出:
3.柱状图与堆叠图
# 柱状图与堆叠图fig,axes = plt.subplots(4,1,figsize = (10,10))s = pd.Series(np.random.randint(0,10,16),index = list('abcdefghijklmnop')) df = pd.DataFrame(np.random.rand(10,3), columns=['a','b','c'])s.plot(kind='bar',color = 'k',grid = True,alpha = 0.5,ax = axes[0]) # ax参数 → 选择第几个子图# 单系列柱状图方法一:plt.plot(kind='bar/barh') # dataframe里面如果有标签的话,默认以标签作为横坐标df.plot(kind='bar',ax = axes[1],grid = True,colormap='Reds_r')# 多系列柱状图df.plot(kind='bar',ax = axes[2],grid = True,colormap='Blues_r',stacked=True) # 多系列堆叠图# stacked → 堆叠df.plot.barh(ax = axes[3],grid = True,stacked=True,colormap = 'BuGn_r') #横向的堆叠图 也可以这样写:df.plot(kind = 'barth')# 新版本plt.plot.
输出:
5.柱状图的另一种画法
# 柱状图 plt.bar()plt.figure(figsize=(10,4))x = np.arange(10)y1 = np.random.rand(10)y2 = -np.random.rand(10)plt.bar(x,y1,width = 1,facecolor = 'yellowgreen',edgecolor = 'white',yerr = y1*0.1)plt.bar(x,y2,width = 1,facecolor = 'lightskyblue',edgecolor = 'white',yerr = y2*0.1)# x,y参数:x,y值# width:宽度比例# facecolor柱状图里填充的颜色、edgecolor是边框的颜色# left-每个柱x轴左边界,bottom-每个柱y轴下边界 → bottom扩展即可化为甘特图 Gantt Chart# align:决定整个bar图分布,默认left表示默认从左边界开始绘制,center会将图绘制在中间位置# xerr/yerr :x/y方向error barfor i,j in zip(x,y1): plt.text(i+0.3,j-0.15,'%.2f' % j, color = 'white')for i,j in zip(x,y2): plt.text(i+0.3,j+0.05,'%.2f' % -j, color = 'white')# 给图添加text# zip() 函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。
输出:
6.面积图
# 面积图fig,axes = plt.subplots(2,1,figsize = (8,6))df1 = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])df2 = pd.DataFrame(np.random.randn(10, 4), columns=['a', 'b', 'c', 'd'])df1.plot.area(colormap = 'Greens_r',alpha = 0.5,ax = axes[0])df2.plot.area(stacked=False,colormap = 'Set2',alpha = 0.5,ax = axes[1])# 使用Series.plot.area()和DataFrame.plot.area()创建面积图# stacked:是否堆叠,默认情况下,区域图被堆叠# 为了产生堆积面积图,每列必须是正值或全部负值!# 当数据有NaN时候,自动填充0,所以图标签需要清洗掉缺失值
输出:
7.填图
# 填图 默认和坐标轴之间做一个填充fig,axes = plt.subplots(2,1,figsize = (8,6))x = np.linspace(0, 1, 500)y1 = np.sin(4 * np.pi * x) * np.exp(-5 * x)y2 = -np.sin(4 * np.pi * x) * np.exp(-5 * x)axes[0].fill(x, y1, 'r',alpha=0.5,label='y1')axes[0].fill(x, y2, 'g',alpha=0.5,label='y2')# 对函数与坐标轴之间的区域进行填充,使用fill函数# 也可写成:plt.fill(x, y1, 'r',x, y2, 'g',alpha=0.5)x = np.linspace(0, 5 * np.pi, 1000) y1 = np.sin(x) y2 = np.sin(2 * x) axes[1].fill_between(x, y1, y2, color ='b',alpha=0.5,label='area') # 填充两个函数之间的区域,使用fill_between函数for i in range(2): axes[i].legend() axes[i].grid()# 添加图例、格网
输出:
8.饼图
# 饼图 plt.pie()# plt.pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=None, # radius=None, counterclock=True, wedgeprops=None, textprops=None, center=(0, 0), frame=False, hold=None, data=None)s = pd.Series(3 * np.random.rand(4), index=['a', 'b', 'c', 'd'], name='series')plt.axis('equal') # 保证长宽相等plt.pie(s, explode = [0.1,0,0,0], #a和其他部分距离偏离0.1 labels = s.index, colors=['r', 'g', 'b', 'c'], autopct='%.2f%%',#以二位小数点的百分号的形式显示 pctdistance=0.6, labeldistance = 1.2, shadow = True, startangle=0, radius=1.5, frame=False)print(s)# 第一个参数:数据# explode:指定每部分的偏移量 # labels:标签# colors:颜色# autopct:饼图上的数据标签显示方式# pctdistance:每个饼切片的中心和通过autopct生成的文本开始之间的比例# labeldistance:被画饼标记的直径,默认值:1.1# shadow:阴影# startangle:开始角度# radius:半径# frame:图框# counterclock:指定指针方向,顺时针或者逆时针
输出:
a 0.744065b 2.069706c 2.159888d 0.642984Name: series, dtype: float64
9.直方图+密度图
# 直方图+密度图s = pd.Series(np.random.randn(1000))s.hist(bins = 20, histtype = 'bar', align = 'mid', orientation = 'vertical', alpha=0.5, normed =True)# bin:箱子的宽度# normed 标准化# histtype 风格,bar,barstacked,step,stepfilled# orientation 水平还是垂直{‘horizontal’, ‘vertical’}# align : {‘left’, ‘mid’, ‘right’}, optional(对齐方式)s.plot(kind='kde',style='k--')# 密度图 #如果把直方图和密度图放在一起的话,直方图必须标准化,否则不显示密度图 标准化就是把每个值放到0和1之间 #不标准化的化会显示实际值
输出:
10.堆叠直方图
# 堆叠直方图plt.figure(num=1)df = pd.DataFrame({ 'a': np.random.randn(1000) + 1, 'b': np.random.randn(1000), 'c': np.random.randn(1000) - 1, 'd': np.random.randn(1000)-2}, columns=['a', 'b', 'c','d'])df.plot.hist(stacked=True, bins=20, colormap='Greens_r', alpha=0.5, grid=True)# 使用DataFrame.plot.hist()和Series.plot.hist()方法绘制# stacked:是否堆叠df.hist(bins=50)# 生成多个直方图
输出:
array([[, ], [ , ]], dtype=object)
11.散点图
# plt.scatter()散点图 散点图会用到很多 因为图片就是散点图# plt.scatter(x, y, s=20, c=None, marker='o', cmap=None, norm=None, vmin=None, vmax=None, # alpha=None, linewidths=None, verts=None, edgecolors=None, hold=None, data=None, **kwargs)plt.figure(figsize=(8,6))x = np.random.randn(1000)y = np.random.randn(1000)plt.scatter(x,y,marker='.', s = np.random.randn(1000)*100, cmap = 'Reds', c = y, alpha = 0.8,)plt.grid()# s:散点的大小# c:散点的颜色# vmin,vmax:亮度设置,标量# cmap:colormap
输出:
12.散点矩阵
# pd.scatter_matrix()散点矩阵# pd.scatter_matrix(frame, alpha=0.5, figsize=None, ax=None, # grid=False, diagonal='hist', marker='.', density_kwds=None, hist_kwds=None, range_padding=0.05, **kwds)df = pd.DataFrame(np.random.randn(100,4),columns = ['a','b','c','d'])pd.scatter_matrix(df,figsize=(10,6), marker = 'o', diagonal='kde', alpha = 0.5, range_padding=0.1)# diagonal:({‘hist’, ‘kde’}),必须且只能在{‘hist’, ‘kde’}中选择1个 → 每个指标的频率图# range_padding:(float, 可选),图像在x轴、y轴原点附近的留白(padding),该值越大,留白距离越大,图像远离坐标原点
输出:
array([[, , , ], [ , , , ], [ , , , ], [ , , , ]], dtype=object)
13.箱型图
# 箱型图# plt.plot.box()绘制fig,axes = plt.subplots(2,1,figsize=(10,6))df = pd.DataFrame(np.random.rand(10, 5), columns=['A', 'B', 'C', 'D', 'E'])color = dict(boxes='DarkGreen', whiskers='DarkOrange', medians='DarkBlue', caps='Gray')# 箱型图着色# boxes → 箱线# whiskers → 分位数与error bar横线之间竖线的颜色# medians → 中位数线颜色# caps → error bar横线颜色df.plot.box(ylim=[0,1.2], grid = True, color = color, ax = axes[0])# color:样式填充df.plot.box(vert=False, positions=[1, 4, 5, 6, 8], ax = axes[1], grid = True, color = color)# vert:是否垂直,默认True# position:箱型图占位
输出:
14.箱型图另一种画法
# 箱型图# plt.boxplot()绘制# pltboxplot(x, notch=None, sym=None, vert=None, whis=None, positions=None, widths=None, patch_artist=None, bootstrap=None, # usermedians=None, conf_intervals=None, meanline=None, showmeans=None, showcaps=None, showbox=None, showfliers=None, boxprops=None, # labels=None, flierprops=None, medianprops=None, meanprops=None, capprops=None, whiskerprops=None, manage_xticks=True, autorange=False, # zorder=None, hold=None, data=None)df = pd.DataFrame(np.random.rand(10, 5), columns=['A', 'B', 'C', 'D', 'E'])plt.figure(figsize=(10,4))# 创建图表、数据f = df.boxplot(sym = 'o', # 异常点形状,参考marker vert = True, # 是否垂直 whis = 1.5, # IQR,默认1.5,也可以设置区间比如[5,95],代表强制上下边缘为数据95%和5%位置 patch_artist = True, # 上下四分位框内是否填充,True为填充 meanline = False,showmeans=True, # 是否有均值线及其形状 showbox = True, # 是否显示箱线 showcaps = True, # 是否显示边缘线 showfliers = True, # 是否显示异常值 notch = False, # 中间箱体是否缺口 return_type='dict' # 返回类型为字典 ) plt.title('boxplot')print(f)for box in f['boxes']: box.set( color='b', linewidth=1) # 箱体边框颜色 box.set( facecolor = 'b' ,alpha=0.5) # 箱体内部填充颜色for whisker in f['whiskers']: whisker.set(color='k', linewidth=0.5,linestyle='-')for cap in f['caps']: cap.set(color='gray', linewidth=2)for median in f['medians']: median.set(color='DarkBlue', linewidth=2)for flier in f['fliers']: flier.set(marker='o', color='y', alpha=0.5)# boxes, 箱线# medians, 中位值的横线,# whiskers, 从box到error bar之间的竖线.# fliers, 异常值# caps, error bar横线# means, 均值的横线,
输出:
{'boxes': [, , , , ], 'means': [ , , , , ], 'medians': [ , , , , ], 'caps': [ , , , , , , , , , ], 'fliers': [ , , , , ], 'whiskers': [ , , , , , , , , , ]}
# 箱型图# plt.boxplot()绘制# 分组汇总df = pd.DataFrame(np.random.rand(10,2), columns=['Col1', 'Col2'] )df['X'] = pd.Series(['A','A','A','A','A','B','B','B','B','B'])df['Y'] = pd.Series(['A','B','A','B','A','B','A','B','A','B'])print(df)df.boxplot(by = 'X')df.boxplot(column=['Col1','Col2'], by=['X','Y'])# columns:按照数据的列分子图# by:按照列分组做箱型图
输出:
Col1 Col2 X Y0 0.661114 0.164637 A A1 0.483369 0.361403 A B2 0.954009 0.786664 A A3 0.173198 0.500602 A B4 0.156583 0.047123 A A5 0.852358 0.672986 B B6 0.823713 0.625156 B A7 0.705710 0.632264 B B8 0.940125 0.091521 B A9 0.230993 0.753328 B B